Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
he minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int row = triangle.size();
if(row == 0) {
return 0;
}
int[] sum = new int[triangle.get(row - 1).size()];
for(int i = row - 1; i >=0; i--) {
for(int j = 0; j < triangle.get(i).size(); j++) {
if(i == row - 1) {
sum[j] = triangle.get(i).get(j);
} else {
sum[j] = Math.min(sum[j], sum[j + 1]) + triangle.get(i).get(j);
}
}
}
return sum[0];
}
}